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Abstract. In this paper networks that optimize a combined measure of local and global synchronizability
are evolved. It is shown that for low coupling improvements in the local synchronizability dominate net-
work evolution. This leads to an expressed grouping of elements with similar native frequency into cliques,
allowing for an early onset of synchronization, but rendering full synchronization hard to achieve. In con-
trast, for large coupling the network evolution is governed by improvements towards full synchronization,
preventing any expressed community structure. Such networks exhibit strong coupling between dissimi-
lar oscillators. Albeit a rapid transition to full synchronization is achieved, the onset of synchronization
is delayed in comparison to the first type of networks. The paper illustrates that an early onset of syn-
chronization (which relates to clustering) and global synchronization are conflicting demands on network
topology.

PACS. 89.75.-k Complex systems – 05.45.Xt Synchronization; coupled oscillators – 89.75.Fb Structures
and organization of complex systems

1 Introduction

Synchronization problems occur in a multitude of con-
texts, having applications in fields ranging from biology,
ecology, semiconductor lasers to social collective behav-
iors [1–4]. A convenient framework to study synchroniza-
tion goes back to the seminal work of Kuramoto [5], who
studied the synchronization of limit cycle oscillators via

φ̇i = ωi + σ
∑

j

aij sin(φj − φi). (1)

In equation (1) the φi, i = 1...N describe the phases of
the N oscillators, the ωi’s the oscillators’ native frequen-
cies while σ gives the coupling strength and the aij the
structure of the coupling architecture. The coherence of
the N oscillators can be measured by the order parameter

r(t) exp(iφ(t)) = 1/N
∑

j

exp(iφj(t)), (2)

where φ(t) is the average phase and 0 ≤ r ≤ 1 is a measure
for the phase coherence of the oscillators. Note, that r(t)
measures the coherence between all oscillators.

One interesting aspect that has recently found much
interest is synchronization in systems with heterogenous
coupling architectures aij described by complex networks.
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Given a network, the coupling matrix aij can be identi-
fied with its adjacency matrix aij = 1 if node i is linked
to node j and aij = 0 otherwise. In this paper we will
restrict ourselves to symmetrical matrices, i.e. undirected
networks.

Relating the structure and properties of the network
to synchronization properties is a field of very active re-
search [6–25]. One pillar of this research are studies im-
proving the understanding of the stability of the fully
synchronized state via the Master Stability Function ap-
proach pioneered by Pecora et al. [6]. From such anal-
ysis it is found that topologies with very small average
pathlength and a very democratic structure characterized
by homogeneity in the degree distribution have the high-
est stability of the fully synchronized state [17,19]. Re-
cently, these results have been extended to different types
of weighted networks [14,18]. While much insight has been
gained in this way, the method is restricted to studying
systems of identical oscillators and is not able to describe
the interesting dynamics on the way towards the fully syn-
chronized state.

Heterogeneity in the distribution of the native frequen-
cies, however, is the more common case in applications
of the synchronization problem in many, particularly bio-
logical or ecological, contexts. Nontrivial couplings of the
oscillators have been extensively studied [6–25], but corre-
lations in the arrangement of oscillators on the nodes have
rarely found interest so far. However, in [25] it has been
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shown that the synchronization properties of a network
and native frequency arrangement are indeed critically in-
fluenced by correlations in the oscillators placement.

In this recent work we have developed a numeri-
cal method for constructing networks of non-identical
Kuramoto oscillators with optimal synchronization prop-
erties. While the framework does not have the generality
of the eigenratio analysis, insights about the connection
between heterogeneity in the distribution of native fre-
quencies and the network structure can be gained. The
analysis in [25], however, also concentrates on the fully
synchronized state. In this paper we build upon this work,
extending it towards addressing issues of local synchro-
nization and the onset of synchronization.

It has recently been pointed out that synchroniza-
tion properties of networks depend critically on the en-
tire range of coupling strengths [22–24]. While some net-
works exhibit an early onset of synchronization, the fully
synchronized state can be unstable. On the other hand
networks with very stable fully synchronized states may
exhibit a delayed onset of synchronization in comparison
to the latter. This phenomenon is further detailed in ref-
erences [23,24], which introduce the average pairwise co-
herence of linked oscillators

rlink = 1/L
∑

(k,l)

∣∣∣∣∣ lim
∆T→∞

1/∆T

∫ Trel+∆T

Trel

ei(φl(t)−φk(t))dt

∣∣∣∣∣ ,

(3)

as an additional synchronization measure. In (3) the sum
extends over all edges (k, l) of the network and L is the
number of links. Trel denotes the relaxation time and ∆T
the time over which the coherence between adjacent os-
cillators is measured. It is shown that rlink can pick up
information about the way to synchronization in a regime
where r ≈ 0, i.e. where no systemwide synchronization has
occured yet.

While the above order parameter r is a measure for
the global synchronization, rlink can be interpreted as a
measure for local synchronization. Whereas r measures
the coherence between all pairs of oscillators, rlink only
measures the degree of synchronization between pairs of
adjacent oscillators. While both provide the same infor-
mation in fully coupled systems, they may differ substan-
tially particularly when the coupling occurs via a sparse
network. Clearly, rlink = 1 when r = 1. However, a net-
work may have rlink ≈ 1 while r � 1. Such a situation
is found in networks with strong community structures,
where modules can be synchronized in themselves but not
with each other. Indeed, building on this property, it has
been demonstrated that rlink can be used to detect com-
munity structures in networks [26,27]

Recently, two methods for evolving networks of non-
identical oscillators towards enhanced synchronizability
have been proposed. In reference [20] the authors consider
a procedure that rewires networks with a bias towards
connecting oscillators with similar average frequencies.
One major outcome of this work is that for intermedi-
ate coupling strength non-trivial network structures char-

acterized by a high level of cliquishness and large aver-
age distances emerge. This contrasts with the networks
exhibiting an early transition to the fully synchronized
state generated with a different rewiring algorithm in [25]
or such displaying optimal stability of the synchronized
state [17,19]. These networks are found to be very small,
homogeneous in degree and not cliquish. A further impor-
tant finding of [25] is that such networks are characterized
by anticorrelated native frequencies on adjacent nodes.

In this paper we use the methods developed in [25] to
evolve networks that realize different trade-offs between
local and global synchronizability. The outcome of the evo-
lution procedure is found to be strongly influenced by the
coupling strength. We show that strongly cliquish large
networks with distinct community structures of oscillators
with similar native frequencies emerge when the coupling
strength is low, while the small networks with anticorre-
lated adjacent oscillators without community structures
arise for large coupling strengths. In the first case, local
synchronizability is favored over global synchronizability
during the network evolution. In the second case, the net-
work evolution is guided by improvements in the global
synchronizability.

2 Evolving networks with global and local
synchronizability

2.1 Evolution procedure

In the following we study the trade-off between local and
global synchronizability of networks. For this purpose we
define a network’s synconizability for a given coupling
strength σ∗ by

R(σ∗) = λr(σ∗) + (1 − λ)rlink(σ∗) (4)

as a convex combination of local and global synchroniz-
ability. In this definition (4) the quantities R, r and rlink

are first understood as the respective values for homoge-
neous initial conditions φi(t = 0) = 0, i = 1, ..., N . How-
ever, it turns out that configurations with an enhanced
value of R for homogeneous initial conditions also have
an enhanced value of R averaged over heterogeneous ini-
tial conditions. The reason for this appears to be that
the main counterforce against synchronization stems from
the heterogeneity in the native frequency distribution of
the oscillators.

We proceed by using the method described in [25] to
generate network topologies that maximize R for differ-
ent coupling strengths σ∗. Essentially, starting from an
Erdös-Rényi type (ER) random network [28] and native
frequencies randomly drawn from a uniform distribution
over [−1, 1] the evolution procedure consists of the follow-
ing steps.

1. Integrate equations (1) with initial conditions
φi(t = 0) = 0, i = 1, ..., N over the time interval
[0, Trel + ∆T ]. The time interval [0, Trel] is for relax-
ation and average local and global synchronizability
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Fig. 1. Example networks with optimal synchronizability R constructed for (a) low coupling strength (b) intermediate coupling
strength and (c) large coupling strength for λ = 1/2 (equal share of local and global synchronizability in R). Parameters are
N = 100, 〈k〉 = 5. The color of the nodes corresponds to the native frequency of the node, white nodes have ω = −1 and
black nodes ω = 1 while different shades of gray interpolate between both situations. The lower panels (e) and (f) show the
dependence of the global and local synchronizability on the coupling strength σ for the networks (a–c). Data points represent
averages over 100 random initial conditions of the phases.

rlink and r are calculated over [Trel, Trel + ∆T ] to de-
termine R. This defines the ‘fitness’ of the current net-
work configuration. For all the following simulations
Trel = 200 and ∆T = 200 are used.

2. A rewired network, where l randomly picked links are
swapped to l link vacancies is suggested, provided it is
connected. Then its fitness R is determined via step 1.
The network configuration is accepted if it gives rise
to an improvement in the synchronizability measure R
and rejected otherwise.

3. Step 2. is repeated till no improvement in R was found
over the last L = 1/2

∑
i,j aij iterations. Starting from

l ≈ 10 the number of rewired links l is gradually
reduced to narrow down the search space. Typically,
about 10 000 iterations of step 2. are performed.

Figure 1 gives three example networks generated for small,
intermediate and large coupling strength and λ = 1/2.
Clearly, the network generated for low coupling (Fig. 1a)
exhibits a strong community structure marked by a mod-
ular grouping of nodes with similar native frequencies.
The interfaces or bridges between the groups are typi-
cally small which leads to large average distances between
nodes. For the example network of Figure 1a one observes
an almost linear structure, where the native frequencies
of oscillators gradually change from ω = −1 to ω = 1
from left to right. In this sense oscillators with large fre-
quency magnitudes are at the periphery of the network. In
contrast, the network evolved for large coupling strength
shown in Figure 1c appears tightly connected, small and
without any apparent community structure. Closer inspec-
tion shows that native frequencies on adjacent nodes are
not positively correlated as for Figure 1a, but anticor-
related. One also observes that now large and very low

frequency oscillators (black and white nodes) are in the
centre of the network, while oscillators with close the zero
frequency magnitudes (intermediate shade of gray) are at
the periphery. The network shown in Figure 1b interpo-
lates between the limiting cases of Figures 1a and 1c. A
tightly connected core distinguished by on average slightly
anti-correlated frequency pairings has been formed. How-
ever, at the periphery tree-like structures that loosely cou-
ple nodes of positively correlated native frequencies to the
core are retained.

In the lower panels (e) and (f) the dependence of
the global and local synchronizability on the coupling
strength for the example networks are displayed. The net-
work evolved for low coupling (Fig. 1a) exhibits an early
onset of a low degree of global synchronization also marked
by a very steep increase of the local synchronization mea-
sure. Full global synchronization, however, is not achieved
for the range of coupling strengths in the figure. Con-
versely, the network evolved for large coupling (Fig. 1c)
shows a later onset of synchronization, but also a rapid
transition to the fully synchronized state. The network of
Figure 1b is also an intermediate here: it has a slightly
earlier onset of synchronization when compared to 1c, but
does not achieve full synchronization for moderate cou-
pling strength. Closer inspection, e.g. via an analysis of
the coherence matrix

dij = aij

∣∣∣∣∣ lim
∆T→∞

1/∆T

∫ Trel+∆T

Trel

ei(φi(t)−φj(t))dt

∣∣∣∣∣ (5)

introduced in [23,24], shows that the network ends up in
a state where the core nodes and the groupings of nodes
at the periphery are synchronized intrinsically and full
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Fig. 2. Dependence of r and rlink on the coupling strength σ∗

for which the networks were evolved. The curves represent av-
erages over 100 evolved networks (each evolved from a different
ER initial network with a different random native frequency se-
lection) and are calculated for random initial conditions. For
comparison the r(σ) and rlink(σ) dependencies for the initial
ensemble of ER networks are given (dotted and dashed lines).

global synchronization can only be reached for very large
coupling.

It is also worthwhile to note the stepwise increases
of r and rlink for the network (a). This clearly results
from the community structure. Steps in the dependence
of r and rlink on σ represent critical points in the cou-
pling where separate communities become synchronized
with each other. As the coupling between the communi-
ties is low and typically only happens via only a few con-
nections, distinct communities of oscillators are hard to
synchronize. Essentially, this is also the reason why full
synchronization is hard to achieve on these networks.

The above findings already illustrate an important
point: an early onset of synchronization and a rapid tran-
sition to full synchronization are conflicting demands on
the network topology. The first is connected to a high
degree of local synchronization for low coupling and the
existence of small communities of interlinked similar oscil-
lators within the network. The latter requires good mixing
and many linkages between dissimilar oscillators.

2.2 Network structures

To explore and strengthen the main point of the previous
subsection we repeat the evolution procedure for system-
atically varied coupling strengths σ∗ and consider aver-
ages over different realizations of the initial networks and
native frequencies.

In Figure 2 the dependence of the local and global
synchronizabilities of the optimized networks on σ∗ are
shown. The data demonstrate that in comparison to the
ER seed networks the evolution procedure enhances both
local and global synchronizabilities over the entire range
of coupling strengths σ∗. However, whereas a large de-
gree of global synchronization can only be achieved for

large coupling, a large degree of local synchronization is
also achievable for very low σ∗. Initially, both r and rlink

increase slowly with σ∗. The value σ∗ ≈ 0.12 marks a
transition, from which onwards strong improvements in
the global synchronizability become possible. Below, we
shall discuss the changes in network structure that cause
the according differences in the system’s synchronization
behaviour.

For this several quantities are measured to charac-
terize the networks and the arrangement of native fre-
quencies on them. Among these, the clustering coefficient
c [29], the average shortest pathlength l and the variance of
the degree sequence σ2

k are calculated. To better describe
the transition of typical networks from multi-community
structures (cf. Fig. 1a) to networks without community
structure (cf. Fig. 1c) we also compute the number of
nodes ntree that belong to tree structures. This is done
by recursively removing nodes of degree one.

As in [25] the arrangement of native frequencies on
the network can be characterized by the number of adja-
cent pairs of oscillators with native frequencies of opposite
signs, p− and a correlations coefficient

cω =

∑
i,j aij(ωi − ω〉)(ωj − ω)

∑
i,j aij(ωi − ω)2

, (6)

where ω = 1/N
∑

i ωi is the average native frequency for
a given realization. For the ensemble of random initial
Erdös-Rényi networks with N = 100 nodes and average
degree 〈k〉 = 5 without correlations in the arrangement
of the ωi’s one has 〈c〉 = 0.05 ± 0.02, 〈l〉 = 3.0 ± 0.1,
〈σ2

k〉 = 4.6±0.5, 〈ntree〉 = 3.4±0.9, 〈p−〉 = 0 and 〈cw〉 = 0.
Note that in the following 〈·〉 always denotes averages over
the ensemble of initial networks and the ensemble of native
frequencies.

In Figures 3a–3f simulation data for the dependen-
cies of these network and frequency arrangement char-
acteristics on the coupling strength σ∗ for which they
were optimized are given. By the data in panels (a)–(f)
the gradual transition between locally clustered networks
with communities of similar native frequency oscillators
to the unclustered frequency anticorrelated pairing with
growing coupling strength σ∗ is illustrated. For low cou-
pling strength σ∗ the clustering coefficient is vary large
and oscillators are almost always linked to other oscilla-
tors of similar native frequency. Good local synchroniz-
ability within the communities can be realized when the
disturbing influence from one community on the other is
minimized. This is realized when average distances in the
network are large, i.e. distinct communities are widely sep-
arated and only adjacent to other communities synchro-
nizing to a similar average frequency.

When σ∗ is increased the typical size of communities
grows, while the average cliquishness still remains rela-
tively large. Some communities incorporate more links,
whereas others evolve into tree-like structures, but are
composed of oscillators with very similar frequencies. The
increasing prominence of tree-like structures can be seen
from Figure 3f. From σ∗ ≈ 0.12 onwards typically only one
unique densely interconnected core-community is found.
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Fig. 3. Dependence of the average (a) clustering coefficient, (b) fraction of adjacent native frequencies of opposite sign, (c)
correlation coefficient between adjacent native frequencies, (d) pathlength, (e) variance of the degree sequence, and (d) nodes
in tree components on the coupling strength σ∗ for which the networks were optimized. All data points represent averages over
100 optimized networks of size N = 100 and with 〈k〉 = 5.

This core, which is responsible for a large degree of global
synchronization for large coupling, connects to a tree-like
periphery, which is further thinned out of links when σ∗ is
progressively increased. The small periphery still gives an
increased measure of local synchronizability for low cou-
pling and the already relatively large core allows for a
large degree of global synchronization for large coupling.
Increasing σ∗ further to roughly σ∗ ≈ 0.17 the maximum
size of tree-like parts of the networks is reached. At this
stage full synchronization is very hard to achieve, since the
small tree-like communities are only loosely linked to the
core, but strongly supported by similar native frequency
oscillators in the trees.

At around σ∗ = 0.2 the periphery quickly starts to
disappear and most of the network condenses into only
one core. For still larger σ∗ the few mainly degree one
nodes still in tree-like parts can now contribute towards
full synchronization, because they lack the previous sup-
port of similar native frequency oscillators at the end of
the chains. This is seen from a first steep increase of r
at the transition, which is then followed by a gradual ap-
proach towards r = 1 for growing coupling.

Further proof for the transition from cliquish networks
towards core-periphery networks with tree-like peripheries
to networks without community structure is found in the
degree distributions of the networks (see Fig. 4). For low
coupling the distribution proves to be relatively heteroge-
neous, there are hub nodes in the centres of communities
and low degree nodes connecting them. For intermediate
coupling nodes of low degree, chiefly degree one or two rise
in prominence. They are typically either leaves of trees or
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Fig. 4. Degree distribution for networks constructed for sev-
eral values of σ∗. For comparison the degree distribution of the
initial Erdös-Rényi type networks is also shown (ER). The dis-
tributions are constructed from sets of 100 optimized networks
for each σ∗.

involved in long chains in the trees. For larger values of σ∗
trees and with them low degree nodes gradually disappear
and the networks become very homogeneous.

A further interesting observation is that degree and
native frequency magnitude correlate in different ways on
networks optimized for low and large coupling. To exam-
ine this we plot the dependence of the average native fre-
quency magnitude |ω(k)| on the degree k, cf. Figure 5. One
notes that for the networks evolved for low coupling low
degree nodes are typically associated with large magni-
tude native frequencies. Thus nodes with large native fre-
quency magnitudes tend to be situated at the periphery of
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Fig. 5. Dependence of the average absolute value of the native
frequency |ω|(k) on the degree for networks evolved for small
and large coupling. For large coupling large native frequencies
are associated with large degrees but for small coupling a small
correlation to the opposite is observed. The line |ω|(k) = 0.5
gives the expectation for an uncorrelated ensemble. Data av-
eraged over 100 evolved networks in each case.

the network. This contrasts with the opposite correlation
for networks evolved for large coupling. In these larger de-
gree nodes typically also have larger native frequencies, i.e.
large native frequencies tend to be in the centre of the net-
work. An explanation for this is that such an arrangement
actually favors a larger degree of anticorrelation between
adjacent native frequencies of oscillators.

2.3 Spectral analysis

Albeit it neglects correlations between network topology
and oscillator identity a spectral analysis of the evolved
networks also proves insightful. From the symmetric cou-
pling matrix aij the network’s Laplacian matrix G can be
constructed via

gij =

{
aij if i �= j

−∑
j aij otherwise

. (7)

Since we assume symmetric real coupling all eigenvalues
of G are real and non-negative. They can be ordered as
0 = e0 ≤ e1 ≤ ... ≤ eN = emax. For connected net-
works one has emin = e1 > 0. Generally, the number of
zero eigenvalues of G gives the number of connected com-
ponents of the corresponding networks. Eigenvalues of G
close to zero indicate a network structure close to dis-
connected components. Hence, loosely connected commu-
nity structures manifest themselves by gaps between small
eigenvalues [26].

In Figure 6a the spectrum of networks evolved for dif-
ferent σ∗ is shown. One notes, that networks evolved for
small σ∗ have many eigenvalues close to zero. The number
of close to zero eigenvalues then decays as σ∗ is increased
till the narrow compact spectra characterizing globally
synchronizable networks are reached. Community struc-
tures referred to above are groupings of connected oscilla-
tors with similar native frequencies. Even though the iden-
tity of oscillators is not reflected in the Laplacian matrix,
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Fig. 6. (a) Spectrum of the Laplacian matrix of networks
evolved for different values of σ∗. (b) Dependence of the in-
verse of the smallest non-zero eigenvalue of the Laplacian ma-
trix of the evolved network on σ∗ and dependence of the time
Tsync till 99% of the stationary degree of synchronization r is
reached on σ∗ (inset). In both panels data are averaged over
100 optimized networks and for the inset of (b) also over 10
independent random initializations of the phases per network.

gaps gj = |1/ej+1 − 1/ej|, j = 1, ..., N − 1 between close
to zero eigenvalues with small index j decay strongly with
σ∗. Since communities of many different sizes are evolved
it is not surprising that the spectra do not reveal such
clear gaps between groups of distinct eigenvalues as, e.g.,
discussed in [26].

Of interest in the context of synchronization are also
the eigenratio emax/emin and the inverse of the smallest
eigenvalue 1/emin. For systems of identical oscillators the
eigenratio determines the stability of the fully synchro-
nized state [6] and the inverse of the smallest non-trivial
eigenvalue has recently been established to be associated
with the time to synchronization [30].

Data for the dependence of 1/emin on the coupling
σ∗ are shown in Figure 6b. One observes an initially strong
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decay of 1/emin with σ∗ for partially synchronizable net-
works which is followed by a short recovery in the region
of the core-periphery networks and a further decay in the
direction of the core only networks that allow for full syn-
chronization. We also measured the average time Tsync

till 99% of the stationary value of global synchronization
r is reached. The dependence on σ∗ (cf. inset of Fig. 6b)
corresponds well with that of 1/emin on σ∗, thus corrobo-
rating the findings of [30] for the synchronization of non-
identical oscillators. We thus observe that relaxation times
are longest for locally partially synchronizable networks
and shortest for the networks where global synchroniza-
tion becomes possible.

Last, since there is not much variation in the depen-
dence of the maximum degree on σ∗ the maximum eigen-
value emax stays roughly constant and the dependence of
the eigenratio on σ∗ mirrors that of 1/emin on σ∗.

2.4 Sensitivity to the parameter λ

All results presented above were obtained for the partic-
ular choice of λ = 1/2. We also experimented with dif-
ferent values of 0 < λ < 1 to check the sensitivity of
results to it. Though the actual structure of the evolved
networks is found to depend on λ, the general observation
that networks evolved for different coupling strength σ∗
change in a systematic way from low to large σ∗ is found
to be very robust. Clearly, the larger the contribution of
the local synchronizability, the longer cliquish community
structures are retained. On the other hand a larger contri-
bution of the global synchronizability favours a transition
towards the core-periphery and core only structures for
lower σ∗.

For the extreme case λ = 0 the synchronization mea-
sure R only includes local synchronization. Optimal sys-
tem configurations in this case are always characterized
by only local synchronization. On the other hand, the case
λ = 1 corresponds to the situation discussed in [25].

3 Clustering and the onset of synchronization

One of the contentions of the previous section is that
a high degree of clustering facilitates the onset of syn-
chronization, but works counter to reaching full synchro-
nization. During the optimization procedure we applied
so far, clustering in the network topologies but also in
the arrangement of native frequencies on them was gen-
erated. As we will show below, already the clustering
of the coupling network strongly influences the onset of
synchronization.

Till now, the trade-off between the onset of synchro-
nization and full synchronization has only been related to
the heterogeneity of the degree distribution [23,24]. The
main cause of an early onset of synchronization in hetero-
geneous networks are hub nodes, which synchronize first.
In this way they build a germ cluster of synchrony that
progressively encompasses more and more nodes as the
network reaches higher levels of synchronization. However,
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Fig. 7. Dependence of the of r and rlink on the coupling
strength for networks with different degrees of clustering. Data
are for networks of size N = 1000 with 〈k〉 = 5. Each point
represents an average over 10 random frequency combinations
and 100 networks.

even though extremely large clustering seems to require
the presence of hubs, networks can be highly clustered
without having overly pronounced hub structures. Thus,
relating clustering and the onset of synchronization and
full synchronization points towards a mechanism different
from the one previously described.

For a more detailed investigation of this problem net-
works of various degrees of clustering have to be con-
structed. In this we follow an approach in which we apply
a network evolution procedure that gradually favors more
and more cliquish configurations. The procedure consists
of random link rewiring proposals (as in the optimization
procedure in Sect. 2.1), that are accepted with probabil-
ity p if they lead to an increase in the average cluster-
ing coefficient of the network and accepted with proba-
bility 1 − p otherwise. By varying the parameter p from
p = 0 (bias towards small clustering), p = 1/2 (neutral)
to p = 1 (strongest bias towards large clustering) ensem-
bles of networks with different degrees of clustering can be
generated. In the procedure we always make sure to only
suggest rewirings if they lead to connected networks.

Figure 7 shows the dependence of r and rlink on
σ for ensembles of networks with different levels of
clustering. Clearly, for network topologies with larger clus-
tering coefficient synchronization sets in for lower coupling
strength while larger degrees of synchronization are harder
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to achieve. Likewise, these networks exhibit a high degree
of local synchronization for low coupling.

4 Conclusions

In this paper we have studied different trade-offs between
local and global synchronization. Global synchronization
is defined by the standard order parameter r, which mea-
sures the systemwide coherence of oscillators. Local syn-
chronization, however, is defined in terms of the fraction
of phase coherent linked pairs of oscillators as recently
introduced in [23]. Depending on the structure of the cou-
pling network the difference between both measures can
be substantial as long as full synchronization has not been
reached.

Defining the overall synchronizability R of networks as
a combined measure of global and local synchronizability
networks that optimize R for different coupling strengths
σ∗ have been evolved. The r(σ) dependence of networks
optimizing R for low and large coupling differs fundamen-
tally. On networks evolved for low coupling a very early
onset of synchronization is observed, but the transition
to full synchronization is delayed to very large couplings.
In contrast, networks evolved for large coupling have a
later onset of synchronization, but rapidly reach the fully
synchronized state after that. These findings support the
conjecture that an early onset of synchronization and a
rapid transition to the fully synchronized state are con-
flicting demands on network topology.

We found that networks that exhibit an early onset
of synchronization typically have very expressed commu-
nity structures, in which nodes of similar average native
frequencies form cliques. These networks are typically rel-
atively large and nodes associated with native frequencies
of large magnitude tend to be at the periphery. In contrast,
networks on which a rapid transition to full synchroniza-
tion can be reached have no community structures, are not
clustered, are marked by anticorrelations in the native fre-
quencies of adjacent oscillators and are not cliquish [25].
In between both extremes networks with clique structures
at the periphery and a unique central core realize interme-
diate trade-offs between an early onset and a rapid transi-
tion to a large degree of synchronization. These networks
have large tree-like parts that distance few small remain-
ing communities from the core.

The relation between clustering and the onset of
synchronization is further supported by the exper-
iments presented in the last section of the paper.
There we first evolved networks with large clustering
and then investigated the r(σ)-dependence for uncor-
related ensembles of oscillators. Large clustering of
the network topology is demonstrated to be related
to an early onset of synchronization, but also renders

full synchronization more difficult. For networks with low
clustering the onset of synchronization occurs later, but
the transition is found to be steeper.
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